24 research outputs found

    Developing a smart and clean technology for bioremediation of antibiotic contamination in arable lands

    Get PDF
    This study presents a smart technological framework to efficiently remove azithromycin from natural soil resources using bioremediation techniques. The framework consists of several modules, each with different models such as Penicillium Simplicissimum (PS) bioactivity, soft computing models, statistical optimisation, Machine Learning (ML) algorithms, and Decision Tree (DT) control system based on Removal Percentage (RP). The first module involves designing experiments using a literature review and the Taguchi Orthogonal design method for cultural conditions. The RP is predicted as a function of cultural parameters using Response Surface Methodology (RSM) and three ML algorithms: Instance-Based K (IBK), KStar, and Locally Weighted Learning (LWL). The sensitivity analysis shows that pH is the most important factor among all parameters, including pH, Aeration Intensity (AI), Temperature, Microbial/Food (M/F) ratio, and Retention Time (RT), with a p-value of <0.0001. AI is the next most significant parameter, also with a p-value of <0.0001. The optimal biological conditions for removing azithromycin from soil resources are a temperature of 32 °C, pH of 5.5, M/F ratio of 1.59 mg/g, and AI of 8.59 m3/h. During the 100-day bioremediation process, RP was found to be an insignificant factor for more than 25 days, which simplifies the conditions. Among the ML algorithms, the IBK model provided the most accurate prediction of RT, with a correlation coefficient of over 95%

    Enhancing community resilience in arid regions: A smart framework for flash flood risk assessment

    Get PDF
    This paper presents a novel framework for smart integrated risk management in arid regions. The framework combines flash flood modelling, statistical methods, artificial intelligence (AI), geographic evaluations, risk analysis, and decision-making modules to enhance community resilience. Flash flood is simulated by using Watershed Modelling System (WMS). Statistical methods are also used to trim outlier data from physical systems and climatic data. Furthermore, three AI methods, including Support Vector Machine (SVM), Artificial Neural Network (ANN), and Nearest Neighbours Classification (NNC), are used to predict and classify flash flood occurrences. Geographic Information System (GIS) is also utilised to assess potential risks in vulnerable regions, together with Failure Mode and Effects Analysis (FMEA) and Hazard and Operability Study (HAZOP) methods. The decision-making module employs the Classic Delphi technique to classify the appropriate solutions for flood risk control. The methodology is demonstrated by its application to the real case study of the Khosf region in Iran, which suffers from both drought and severe floods simultaneously, exacerbated by recent climate changes. The results show high Coefficient of determination (R2) scores for the three AI methods, with SVM at 0.88, ANN at 0.79, and NNC at 0.89. FMEA results indicate that over 50% of scenarios are at high flood risk, while HAZOP indicates 30% of scenarios with the same risk rate. Additionally, peak flows of over 24 m3/s are considered flood occurrences that can cause financial damage in all scenarios and risk techniques of the case study. Finally, our research findings indicate a practical decision support system that is compatible with sustainable development concepts and can enhance community resilience in arid regions

    Evaluation Of Mechanical and Biocompatibility Properties of Hydroxyapatite/Manganese Dioxide Nanocomposite Scaffolds for Bone Tissue Engineering Application

    Get PDF
    The aim of this research was to evaluate the mechanical properties, biocompatibility, and degradation behavior of scaffolds made of pure hydroxyapatite (HA) and HA‐modified by MnO2 for bone tissue engineering applications. HA and MnO2 were developed using sol‐gel and precipitation methods, respectively. The scaffolds properties were characterized using X‐ray diffraction (XRD), Fourier transform spectroscopy (FTIR), scanning electron microcopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The interaction of scaffold with cells was assessed using in vitro cell proliferation and alkaline phosphatase (ALP) assays. The obtained results indicate that the HA/ MnO2 scaffolds possess higher compressive strength, toughness, hardness, and density when compared to the pure HA scaffolds. After immersing the scaffold in the SBF solution, more deposited apatite appeared on the HA/MnO2, which results in the rougher surface on this scaffold compared to the pure HA scaffold. Finally, the in vitro biological analysis using human osteoblast cells reveals that scaffolds are biocompatible with adequate ALP activit
    corecore